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ABSTRACT 

The integration of robotics into agriculture has ushered in a transformative era, offering innovative 

solutions to longstanding challenges such as labor shortages, rising production costs, and the need for 

increased efficiency. Among these advancements, agricultural fruit harvesting robots have emerged as a 

pivotal development, poised to revolutionize traditional farming practices. This paper presents a 

comprehensive overview of autonomous fruit harvesting robots, impact on agricultural practices. The 

Agricultural Fruit Harvesting Robot (AFHR) represents a significant milestone in modern agriculture, 

equipped with state-of-the-art sensors, actuators, and machine learning algorithms. Its capabilities 

encompass the identification of ripe fruits, delicate manipulation, and efficient harvesting from trees. The 

AFHR's design prioritizes versatility, enabling adaptation to various fruit types, shapes, sizes, and 

orchard configurations, ensuring broad applicability across diverse agricultural landscapes. Key 

technological features, including computer vision and machine learning algorithms, empower the AFHR 

to discern fruit maturity levels, optimizing harvesting timing to maximize yield and minimize waste. 

Autonomous navigation systems facilitate efficient traversal of orchards while avoiding obstacles, 

reducing labor requirements and minimizing plant damage. The integration of soft grippers on robotic 

arms ensures gentle fruit handling, mitigating bruising and damage during harvesting. Autonomous fruit 

harvesting robots offer a promising solution to address labor shortages, enhance efficiency, and improve 

the sustainability of fruit production systems. Continued advancements in technology are anticipated to 

further refine the capabilities and foster widespread adoption of these robots in agricultural practices. 

The AFHR stands at the forefront of agricultural innovation, poised to redefine the future of fruit 

harvesting, fostering increased efficiency, sustainability, and profitability in the agricultural sector. 
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Introduction 

In the 20th century, developed countries 

witnessed a dramatic decline in the agricultural 

workforce, shrinking by 80 times [1]. Nonetheless, 

manual labor remains a significant cost factor, 

constituting 40% of the total production expenses for 

vegetables, fruits, and cereals [2]. The evolution of 

modern agriculture has spurred the adoption of robotic 

and intelligent machinery, driven by several key 

factors. Firstly, the escalating costs and diminishing 

availability of skilled labor pose significant challenges 

to the industry. Secondly, ensuring food safety has 

become paramount, necessitating the deployment of 

reliable robotic systems to minimize contamination 

risks [3]. Thirdly, the imperative of sustainable 

agriculture, balancing food production with 

environmental preservation, underscores the need for 

robotic technologies to enhance productivity while 

minimizing costs [4]. 

Horticulture, known for its labor-intensive nature, 

relies heavily on manual labor, with automation 

currently only accounting for 15% of operations. This 

manual approach extends to fruit harvesting, 

contributing significantly to crop shortages, which can 

reach a staggering 50%.Moreover, the urbanization 

trend further complicates the recruitment of seasonal 
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workers for harvests [5].It's evident that widespread 

adoption of robotics could revolutionize horticulture, 

enhancing productivity, alleviating manual labor 

burdens, and ultimately reducing crop shortages. 

In recent years, the agriculture industry has 

witnessed a significant shift towards automation and 

robotics to address challenges such as labor shortages, 

increasing production demands, and improving 

efficiency [6]. Fruit harvesting, in particular, has 

emerged as a sector ripe for technological innovation. 

With the advent of intelligent robotics, farmers can 

now harness advanced automation solutions to 

streamline the harvesting process, optimize yield, and 

ensure the quality of produce. The examination of 

robotic harvesting systems reveals two primary 

classifications: fully integrated systems and subsystems 

dedicated to harvesting tasks. These subsystems 

encompass various functionalities, including vision [7], 

gripper technology [8], and control mechanisms [9]. 

In the early 1960s, [10] explored the idea of an 

automatic harvester, envisioning a system utilizing 

robotic technology for fruit picking. Their proposal 

involved a robotic arm equipped with a manipulator to 

reach and detach fruit from trees, guided by a machine 

vision system for detecting the fruit. However, the 

agricultural setting posed significant challenges to fruit 

detection, given the unstructured environment, sensor 

limitations, and the need for robust methodologies. 

Consequently, the development of reliable solutions 

remains a pressing issue, prompting ongoing research 

efforts aimed at addressing these multifaceted 

challenges. This review paper aims to outline existing 

techniques and ongoing research endeavors in fruit 

harvesting. 

Mechanical harvester 

Since the early 1960s, researchers have delved 

into mechanical harvesting techniques[11]. Coppock 

proved that it was possible to shake a citrus tree 

mechanically to extract fruit from its branches without 

damaging the tree itself, and so claimed that citrus fruit 

could be harvested mechanically. Pre-harvest 

abscission spray was also suggested to loosen the fruits 

on the tree and lessen the physical harm to the tree. 

Furthermore, to enhance the design of mechanical 

harvesters, the biological and physical properties of the 

fruit were also studied by [12]. 

Coppock and Jutras [13] constituted an early 

version of Adrain and Fridley's inertia-based limb 

shaker. The mechanism produced the shacking action 

by rotating an eccentric weight of approximately 38.5 

kg once the shaker was fixed to the tree limb. The fruit 

will be picked using the auger-shaped spindle-style 

picking tool without sustaining too much harm. The 

clamping mechanism notably caused considerable 

damage to the tree's bark. The primary obstacle to 

implementing this idea in a workable device is the 

inability to arrange the apparatus in a way that allows it 

to continuously and non-selectively remove every fruit 

from the tree canopy.  

Jutras and Patterson [14] examined the efficacy of 

an oscillating air blast apparatus for harvesting citrus 

fruit. Their findings revealed that the rate of oscillation 

significantly influenced fruit removal, with higher 

oscillation rates resulting in greater removal 

percentages. The research suggested that employing 

the oscillating air blast method could facilitate citrus 

harvesting, yielding removal rates ranging from 40% to 

95.6%. Interestingly, while the oscillating air blast 

method proved effective for fruit removal, it also 

presented challenges in post-harvest handling. 

Specifically, it was observed that utilizing this method 

led to increased post-harvest decay when compared to 

traditional hand picking or automatic robotic picking 

techniques. 

Coppock [15] studied a mechanical method for 

harvesting trees involved employing fixed stroke, 

inertia, and direct impact on tree limbs to shake them. 

A system comprising two catching frames, each 

equipped with a tree shaker, was capable of harvesting 

10 trees per hour with a 3-person crew. The efficiency 

of fruit removal using these systems ranged from 90 to 

95%. However, several challenges arose from this 

method, including fruit damage caused by falling 

foliage, lower removal rates during the early and 

middle stages of the harvesting season, and the 

unintentional removal of both large and small 

immature fruits. 

Wilson et al. [16] examined in their study the 

efficacy of an air shaker combined with pre-application 

of an abscission agent on FMC-3. This approach 

involved integrating the use of the abscission agent 

into the pre-harvest process, specifically as part of the 

air shaker harvesting method. The abscission agent was 

administered using air carrier sprayers, while trees 

were subjected to shaking via an experimental air 

shaker equipped with a conical scanning air delivery 

system. The harvesting rate achieved was 1.5 acres (0.6 

ha) per hour. Results showed that fruit removal rates 

ranged from 97% to 99%. 

Futch and Roka [17] conducted a study on two 

types of canopy shakers designed for continuous 

operation: one was a self-propelled unit, while the 

other was a tractor-drawn unit. Following the harvest, 

manual labor was required to gather the fruits. Key 
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performance factors included the shaking frequency 

and stroke of the machinery. These harvesters were 

capable of harvesting between 100 and 200 trees per 

hour. Research carried out by the Florida Department 

of Citrus, the University of Florida, and private 

enterprises indicated that these systems could reduce 

harvesting costs by 20 to 40 cents per box. 

Torregrosa et al. [18] conducted researchers in 

Spain to evaluated the efficacy of a tractor-mounted 

trunk shaker compared to a hand-held shaker across 

various orange and mandarin varieties. The results 

showed that the tractor-mounted shaker outperformed 

the hand-held shaker, achieving a detachment rate of 

72% compared to 57% with the hand-held method. 

However, it was observed that fruits picked from the 

ground during testing exhibited a notable incidence of 

bruising. Moreover, there were concerns regarding 

defoliation, particularly at higher shaking frequencies, 

and bark damage during the months of May and June. 

Automatic harvester  

The traditional method of harvesting fruits and 

vegetables for the fresh market is labor-intensive, 

requiring a shift towards automated processes to 

enhance efficiency and reduce dependency on manual 

labor. Despite advancements in agricultural robotics, a 

significant portion of fruits and vegetables are still 

hand-picked annually in both open fields and 

greenhouses. This reliance on manual labor not only 

results in high costs but also poses challenges in 

finding skilled workers willing to perform repetitive 

tasks in challenging field conditions. To justify the 

cost-effectiveness of robotic harvesting, it's crucial to 

maximize fruit yield to offset automation expenses. 

However, achieving this goal becomes increasingly 

difficult due to the necessity of growing plants at 

higher densities, which presents challenges for 

autonomous robots in detecting, localizing, and 

harvesting fruits simultaneously. 

Van Henten et al. [19] introduced an innovative 

approach to cucumber harvesting in greenhouses, 

employing a computer vision-based autonomous robot. 

This robotic system utilizes two cameras equipped with 

distinct filters to detect cucumbers within the 

greenhouse environment. Impressively, the computer 

vision system boasts a detection rate exceeding 95% 

for locating cucumbers. Furthermore, employing 

geometric models, the system assesses the ripeness of 

the identified cucumbers. Field trials subsequently 

validated the robot's capability to harvest cucumbers 

autonomously, achieving an 80% success rate without 

the need for human intervention. Notably, the robot 

demonstrated efficiency, averaging 45 seconds to 

harvest each cucumber. 

Baeten et al. [20] elucidated the development and 

operational principles of an Autonomous Fruit Picking 

Machine (AFPM) designed specifically for robotic 

apple harvesting. Utilizing dual-level sensors, the 

AFPM orchestrates precise positioning of the robotic 

platform throughout the picking process. Experimental 

findings showcase an impressive detection and 

harvesting rate of approximately 80% for apples within 

a diameter range spanning from 6 cm to 11 cm. The 

primary objective remains the reduction of the picking 

cycle duration from an average of 9 seconds to 

approximately 5 seconds, or less. Achieving this target 

aims to elevate the productivity of the AFPM to a level 

comparable to the workload of approximately 6 manual 

labourers, rendering the machine economically 

feasible. 

Tanigaki et al. [21] introduced a cherry-harvesting 

robot designed for trial purposes, which underwent 

basic experimentation. Comprised of essential 

components including a 3-D vision sensor, an end 

effector, a computer, and a traveling device, this robot 

aimed to optimize cherry-picking processes. The 3-D 

vision sensor utilized red and infrared laser diodes to 

concurrently scan the objects. Through image 

processing, the sensor identified the positions of both 

fruits and obstacles, facilitating the determination of 

the end effector's trajectory. 

Hayashi et al. [22] developed a robotic system 

specifically for harvesting strawberries grown in 

elevated substrate culture. This innovative robot 

featured various components including a cylindrical 

manipulator, end effect or, machine vision unit, storage 

unit, and traveling mechanism. The machine vision 

unit was a notable aspect of the robot, comprising five 

light sources, each equipped with 120 LED chips, and 

three aligned CCD cameras. This setup enabled the 

system to detect fruit peduncles with a commendable 

60% accuracy rate. During harvesting tests conducted 

on strawberries at over 80% maturity, the system 

demonstrated a 41.3% success rate when utilizing 

suction-assisted picking, and a slightly lower rate of 

34.9% without suction assistance. Impressively, the 

harvesting time per fruit, including transfer, averaged 

11.5 seconds. Moreover, the system's execution time 

was estimated to be 2.5-3 times quicker than manual 

harvesting methods. This robotic solution showcases 

promising advancements in agricultural automation, 

offering potential benefits such as increased efficiency 

and reduced labor demands in strawberry cultivation. 
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De-An et al. [23] created a robotic apple 

harvesting tool with a manipulator, end-effector, and 

image-based vision servo control system. The 

pneumatically operated gripper on the spoon-shaped 

end-effector was created to satisfy the demands of 

apple picking. With the aid of a vision-based module, 

the harvesting robot carried out its work autonomously. 

Visual C++ 6.0 was chosen as the programming 

development tool for the host computer. The 

effectiveness of the device was evaluated through 100 

picking tests conducted at 10 different positions. 

Results indicated a 77% success rate in apple 

harvesting, with an average time of approximately 15 

seconds per apple. These findings suggest that the 

prototype machine and control system hold promise for 

outdoor picking operations. 

Hemming et al. [24] devised a robotic system 

designed specifically for harvesting sweet-peppers 

within greenhouse environments. In Europe, the annual 

yield of sweet pepper fruit is estimated to be around 

1.9 million tons. The robot's manipulator controller 

utilizes the xPC Target real-time software environment 

developed by MathWorks (located in Natick, USA), 

operating on a dedicated x86-based PC. Reports 

indicate that the automated harvesting process requires 

an average of 6 seconds per fruit. However, current 

technology has only achieved a success rate of 33%, 

with an average picking time of 94 seconds per fruit. 

During initial testing phases, 97% of the fruits (189 out 

of 194) were successfully detected, 86% (167 fruits) 

were reachable, and 79% (154 fruits) were successfully 

picked. 

Yasukawa et al. [25] introduced a novel approach 

to automate tomato fruit harvesting through the 

integration of an infrared imaging system and a fruit 

picking technique utilizing specular reflection. Their 

research concentrated on identifying distinctive 

features of tomatoes and devised a two-wavelength 3D 

vision sensor for this purpose. This sensor operates by 

emitting near-infrared and red laser beams coaxially 

and capturing the reflected light on a Position Sensitive 

Device (PSD) with the aid of a lens to measure 

distances accurately. The detection of fruits within the 

harvesting chamber relies on pinpointing the center of 

the fruit, which exhibits strong specular reflection in 

the infrared image. Upon evaluation with real-world 

environmental images, the system achieved an 

impressive correct answer rate of 88.1%.  

Feng et al. [26] engineered a harvesting robot 

comprising a stereo visual unit, an end-effector 

manipulator, a fruit collector, and a railed vehicle. 

They utilized the R-G colour model to enhance the 

contrast between the target fruit and the background by 

analysing the colour features of images captured by the 

camera. For fruit identification within a cluster, they 

employed the CogPMAlignTool from the Cognex 

VisionPro image processing classlib. Following the 

development, field testing ensued, and the outcomes 

were meticulously analysed. The robot demonstrated a 

commendable 83% success rate in harvesting. 

However, on average, each successful harvest required 

1.4 attempts. Furthermore, a single successful 

harvesting cycle took 8 seconds, exclusive of the time 

spent on movement. 

Altaheri et al. [27] suggested a productive 

architecture for machine vision that will help robots 

harvest dates. A stream of pictures (frames) from an 

RGB video camera in a date orchard is the input used 

by the framework. Comprising three distinct 

classification models, it aims to swiftly categorize date 

fruit images in real-time based on their type, maturity 

level, and whether they are ready for harvesting. The 

classification models for type and maturity employ a 

technique known as transfer learning, leveraging pre-

trained convolutional neural network (CNN) models 

and fine-tuning them to suit the specific task at hand. 

The study delves into the efficacy of two prominent 

CNN architectures, namely AlexNet [28] and VGGNet 

[29], which vary in their size and depth. They 

generated a dataset of 8000 photos of five different 

date types at varying stages of pre-maturity and 

maturity in order to develop a robust vision system. 

The proposed date fruit classification models achieve 

99.01%, 97.25%, and 98.59% with classification times 

of 20.6, 20.7, and 35.9 msec for the type, maturity, and 

harvesting decision classification tasks, respectively. 

Yu et al. [30] introduced the Mask Region 

Convolutional Neural Network (Mask-RCNN) as a 

solution to enhance the effectiveness of machine vision 

in detecting fruits, particularly for a strawberry 

harvesting robot. Their approach involved training the 

Region Proposal Network (RPN) in an end-to-end 

fashion to generate region proposals for each feature 

map. Upon evaluation using 100 test images, the fruit 

detection performance exhibited promising results. 

Specifically, the average precision rate stood at 

95.78%, with a recall rate of 95.41%. Moreover, the 

mean intersection over union (MIoU) rate for instance 

segmentation reached 89.85%, indicative of the 

model's robustness in delineating fruit instances. 

Additionally, the prediction accuracy for ripe fruit 

picking points, as demonstrated by 573 instances, 

showcased a minimal average error of ±1.2 mm, 

underscoring the network's precision in practical 

applications. 
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Xiong et al. [31] proposed an innovative obstacle-

separation algorithm to enhance strawberry harvesting 

by enabling the robot to collect clustered strawberries. 

Equipped with a Hokuyo LIDAR for navigation and an 

RGB-D camera for detection, the system adeptly 

manoeuvres through foliage and obstacles using its 

gripper. During field tests, initial picking success rates 

for partially surrounded or isolated strawberries varied 

from 50% to 97.1%, depending on growth conditions. 

With a second attempt, success rates improved to 75-

100%. Operating at swift speeds, the robot took merely 

6.1 seconds in one-arm mode and 4.6 seconds in two-

arm mode for manipulation tasks. 

Arad et al. [32] developed and tested the 

SWEEPER, a robotic solution tailored for harvesting 

sweet peppers within greenhouse environments. This 

innovative system incorporates a six-degree-of-

freedom industrial arm equipped with a custom-

designed end effector, RGB-D camera, high-

performance computer with a GPU, programmable 

logic controllers, and additional electronic components. 

Operational tasks are split between two Arduino-based 

PLCs, with one managing cart movements along rows 

and elevation, and the other handling low-level 

functions of the end effector. Development primarily 

utilized C++ and Python, leveraging ROS Indigo on 

Ubuntu 14.04. Over a 4-week testing phase involving 

262 fruits, the average harvest cycle was 24 seconds, 

with logistics consuming half of this time. Notably, 

laboratory experiments suggest a potential cycle time 

reduction to 15 seconds by increasing manipulator 

speed. Harvest success rates varied significantly, with 

61% under optimal conditions but dropping to 18% 

under current conditions, underscoring the critical 

importance of tailored crop conditions and varieties for 

effective robotic harvesting. 

Yu et al. [33] designed an innovative robotic 

system tailored for harvesting ridge-planted 

strawberries. They proposed the R-YOLO model, 

specifically designed for accurately detecting 

strawberry poses during automated harvesting. This 

model demonstrated remarkable adaptability and real-

time performance across diverse natural conditions and 

varying light intensities, effectively identifying 

multiple overlapping fruits. Test outcomes, based on 

100 strawberry images, revealed an average 

recognition rate of 94.43% and a recall rate of 93.46%. 

Field trials further validated the system's efficacy, 

achieving an 84.35% harvesting success rate under 

modified conditions. 

Kuznetsova et al. [34] designed a system for 

harvesting robots, integrating a customized YOLOv3 

algorithm with tailored pre- and post-processing 

methods. These enhancements enabled efficient 

adaptation of YOLOv3 for apple detection in machine 

vision systems. Results showed an average apple 

detection time of 19 milliseconds, with 7.8% false 

identifications and 9.2% undetected apples. 

Vrochidou et al. [35] proposed an integrated 

system architecture for Autonomous Robot for Grape 

harvesting (ARG), comprising three primary units: an 

aerial unit, a remote-control unit, and the ARG ground 

unit. The focus lies on the ARG, equipped to perform 

grape harvesting, green harvest, and defoliation. The 

ground unit incorporates an ORBBEC Astra 3D 

camera for navigation, mounted on the wheeled robot, 

providing an RGB-D map for obstacle detection. 

Processing tasks, including communication and 

machine vision algorithms, are managed by NVIDIA 

Jetson TX2 boards. These boards facilitate high-level 

autonomy and feature extraction for decision-making. 

Data transmission occurs via JSON packets. 

Zhang et al. [36] unveiled a novel apple 

harvesting robot characterized by a unified system 

design and field-tested performance. Employing a 

sophisticated deep learning approach, the system 

integrates a Mask R-CNN backbone with an apple 

detection suppression end, yielding cutting-edge 

accuracy on their proprietary dataset. Complementary 

software algorithms facilitate seamless coordination 

among hardware components, enhancing the robot's 

efficacy in automating apple harvesting, especially in 

challenging orchard settings. Field trials conducted in 

two distinct orchards showcased the system's 

adaptability: in a young, well-pruned orchard, it 

achieved an impressive 82.4% harvesting success rate, 

whereas in an older orchard with dense, clustered 

branches and foliage, the success rate stood at 65.2%. 

Notably, the system demonstrated an average cycle 

time of approximately 6 seconds per fruit, 

encompassing both algorithmic processing and 

hardware execution. 

Conclusion 

The emergence of automated fruit harvesting 

robots offers a promising solution to the challenges of 

labor shortages and operational efficiency in 

agriculture. By integrating cutting-edge robotics, 

machine learning, and sensor technologies, these 

robots have the potential to significantly boost 

productivity and profitability on fruit farms while 

reducing dependence on manual labor. Their capacity 

to operate tirelessly and with precision across diverse 

environmental conditions ensures consistent fruit 

quality and yields. As technology progresses, further 

enhancements in design and functionality are 
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anticipated, driving broader adoption and transforming 

fruit harvesting practices globally. In comparison to 

traditional and mechanical method, this proposed 

approach demonstrates enhanced versatility and 

resilience in non-structural environments, particularly 

in scenarios involving overlapping or concealed fruits 

and varying light conditions. This innovation holds the 

promise of revolutionizing fruit harvesting practices on 

a worldwide scale. 
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